In probability theory and directional statistics, the von Mises distribution (also known as the circular normal distribution or Tikhonov distribution) is a continuous probability distribution on the circle. It is a close approximation to the wrapped normal distribution, which is the circular analogue of the normal distribution. A freely diffusing angle on a circle is a wrapped normally distributed random variable with an unwrapped variance that grows linearly in time. On the other hand, the von Mises distribution is the stationary distribution of a drift and diffusion process on the circle in a harmonic potential, i.e. with a preferred orientation. The von Mises distribution is the maximum entropy distribution for a given expectation value of . The von Mises distribution is a special case of the von Mises–Fisher distribution on the N-dimensional sphere.
Read more about Von Mises Distribution: Definition, Moments, Limiting Behavior, Estimation of Parameters, Distribution of The Mean, Entropy
Famous quotes containing the words von and/or distribution:
“Dont tell me that man doesnt belong out there. Man belongs wherever he wants to goand hell do plenty well when he gets there.”
—Wernher Von Braun (19121977)
“My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.”
—Rutherford Birchard Hayes (18221893)