Moments
The moments of the von Mises distribution are usually calculated as the moments of z = eix rather than the angle x itself. These moments are referred to as "circular moments". The variance calculated from these moments is referred to as the "circular variance". The one exception to this is that the "mean" usually refers to the argument of the circular mean, rather than the circular mean itself.
The nth raw moment of z is:
where the integral is over any interval of length 2π. In calculating the above integral, we use the fact that zn = cos(nx) + i sin(nx) and the Bessel function identity (See Abramowitz and Stegun §9.6.19):
The mean of z is then just
and the "mean" value of x is then taken to be the argument μ. This is the "average" direction of the angular random variables. The variance of z, or the circular variance of x is:
Read more about this topic: Von Mises Distribution
Famous quotes containing the word moments:
“Self-expression is not enough; experiment is not enough; the recording of special moments or cases is not enough. All of the arts have broken faith or lost connection with their origin and function. They have ceased to be concerned with the legitimate and permanent material of art.”
—Jane Heap (c. 18801964)
“The government does not concern me much, and I shall bestow the fewest possible thoughts on it. It is not many moments that I live under a government, even in this world. If a man is thought- free, fancy-free, imagination-free ... unwise rulers or reformers cannot fatally interrupt him.”
—Henry David Thoreau (18171862)
“Reminiscences, even extensive ones, do not always amount to an autobiography.... For autobiography has to do with time, with sequence and what makes up the continuous flow of life. Here, I am talking of a space, of moments and discontinuities. For even if months and years appear here, it is in the form they have in the moment of recollection. This strange formit may be called fleeting or eternalis in neither case the stuff that life is made of.”
—Walter Benjamin (18921940)
