Von Mises Distribution - Moments

Moments

The moments of the von Mises distribution are usually calculated as the moments of z = eix rather than the angle x itself. These moments are referred to as "circular moments". The variance calculated from these moments is referred to as the "circular variance". The one exception to this is that the "mean" usually refers to the argument of the circular mean, rather than the circular mean itself.

The nth raw moment of z is:

where the integral is over any interval of length 2π. In calculating the above integral, we use the fact that zn = cos(nx) + i sin(nx) and the Bessel function identity (See Abramowitz and Stegun §9.6.19):

The mean of z is then just

and the "mean" value of x is then taken to be the argument μ. This is the "average" direction of the angular random variables. The variance of z, or the circular variance of x is:

\textrm{var}(x)= 1-E
= 1-\frac{I_1(\kappa)}{I_0(\kappa)}.

Read more about this topic:  Von Mises Distribution

Famous quotes containing the word moments:

    Reminiscences, even extensive ones, do not always amount to an autobiography.... For autobiography has to do with time, with sequence and what makes up the continuous flow of life. Here, I am talking of a space, of moments and discontinuities. For even if months and years appear here, it is in the form they have in the moment of recollection. This strange form—it may be called fleeting or eternal—is in neither case the stuff that life is made of.
    Walter Benjamin (1892–1940)

    There are some moments in life, some feelings.... One can only point to them—and pass by.
    Ivan Sergeevich Turgenev (1818–1883)

    For these are moments only, moments of insight,
    And there are reaches to be attained,
    A last level of anxiety that melts
    In becoming, like miles under the pilgrim’s feet.
    John Ashbery (b. 1927)