Definition
The von Mises probability density function for the angle x is given by:
where I0(x) is the modified Bessel function of order 0.
The parameters μ and 1/κ are analogous to μ and σ2 (the mean and variance) in the normal distribution:
- μ is a measure of location (the distribution is clustered around μ), and
- κ is a measure of concentration (a reciprocal measure of dispersion, so 1/κ is analogous to σ2).
- If κ is zero, the distribution is uniform, and for small κ, it is close to uniform.
- If κ is large, the distribution becomes very concentrated about the angle μ with κ being a measure of the concentration. In fact, as κ increases, the distribution approaches a normal distribution in x with mean μ and variance 1/κ.
The probability density can be expressed as a series of Bessel functions (see Abramowitz and Stegun §9.6.34)
where Ij(x) is the modified Bessel function of order j. The cumulative distribution function is not analytic and is best found by integrating the above series. The indefinite integral of the probability density is:
The cumulative distribution function will be a function of the lower limit of integration x0:
Read more about this topic: Von Mises Distribution
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)