Geodetic Datum - Motivating Theory

Motivating Theory

The earth is not an ellipsoid. This can be shown by differentiating the equation for an ellipsoid and solving for dy/dx. It is a constant multiplied by x/y. Then derive the force equation from the centrifugal force acting on an object on the earth's surface and the gravitational force. Switch the x and y components and multiply one of them by −1. This is the differential equation which when solved will yield the equation for the earth's surface. This is not a constant multiplied by x/y. Note that the earth's surface is also not an equal-potential surface, as can be verified by calculating the potential at the equator and the potential at a pole. The earth is an equal force surface. A one-kilogram frictionless object on the ideal earth's surface does not have any force acting upon it to cause it to move either north or south. There is no simple analytical solution to this differential equation.

The USGS uses a spherical harmonic expansion to approximate the earth's surface. It has about one hundred thousand terms.

Read more about this topic:  Geodetic Datum

Famous quotes containing the words motivating and/or theory:

    Decisive inventions and discoveries always are initiated by an intellectual or moral stimulus as their actual motivating force, but, usually, the final impetus to human action is given by material impulses ... merchants stood as a driving force behind the heroes of the age of discovery; this first heroic impulse to conquer the world emanated from very mortal forces—in the beginning, there was spice.
    Stefan Zweig (18811942)

    We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fall—which latter, it would seem, is now near, among all people.
    Thomas Carlyle (1795–1881)