Surface
In mathematics, specifically in topology, a surface is a two-dimensional topological manifold. The most familiar examples are those that arise as the boundaries of solid objects in ordinary three-dimensional Euclidean space R3 — for example, the surface of a ball. On the other hand, there are surfaces, such as the Klein bottle, that cannot be embedded in three-dimensional Euclidean space without introducing singularities or self-intersections.
Read more about Surface.
Famous quotes containing the word surface:
“We say justly that the weak person is flat, for, like all flat substances, he does not stand in the direction of his strength, that is, on his edge, but affords a convenient surface to put upon. He slides all the way through life.... But the brave man is a perfect sphere, which cannot fall on its flat side and is equally strong every way.”
—Henry David Thoreau (18171862)
“A society which allows an abominable event to burgeon from its dungheap and grow on its surface is like a man who lets a fly crawl unheeded across his face or saliva dribble unstemmed from his moutheither epileptic or dead.”
—Jean Baudrillard (b. 1929)
“Bees
Shaking the heavy dews from bloom and frond.
Boys
Bursting the surface of the ebony pond.”
—Wilfred Owen (18931918)