Prime Number Theorem

In number theory, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers. The prime number theorem gives a general description of how the primes are distributed amongst the positive integers.

Informally speaking, the prime number theorem states that if a random integer is selected in the range of zero to some large integer N, the probability that the selected integer is prime is about 1 / ln(N), where ln(N) is the natural logarithm of N. For example, among the positive integers up to and including N = 103 about one in seven numbers is prime, whereas up to and including N = 1010 about one in 23 numbers is prime (where ln(103)= 6.90775528. and ln(1010)=23.0258509). In other words, the average gap between consecutive prime numbers among the first N integers is roughly ln(N).

Read more about Prime Number Theorem:  Statement of The Theorem, History of The Asymptotic Law of Distribution of Prime Numbers and Its Proof, Proof Methodology, Proof Sketch, Prime-counting Function in Terms of The Logarithmic Integral, Elementary Proofs, Computer Verifications, Prime Number Theorem For Arithmetic Progressions, Bounds On The Prime-counting Function, Approximations For The nth Prime Number, Table of π(x), x / Ln x, and Li(x), Analogue For Irreducible Polynomials Over A Finite Field

Famous quotes containing the words prime, number and/or theorem:

    Ye elms that wave on Malvern Hill
    In prime of morn and May,
    Recall ye how McClellan’s men
    Here stood at bay?
    Herman Melville (1819–1891)

    I will not adopt that ungenerous and impolitic custom so common with novel writers, of degrading by their contemptuous censure the very performances, to the number of which they are themselves adding—joining with their greatest enemies in bestowing the harshest epithets on such works, and scarcely ever permitting them to be read by their own heroine, who, if she accidentally take up a novel, is sure to turn over its insipid leaves with disgust.
    Jane Austen (1775–1817)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)