Prime Number Theorem For Arithmetic Progressions
Let denote the number of primes in the arithmetic progression a, a + n, a + 2n, a + 3n, … less than x. Dirichlet and Legendre conjectured, and Vallée-Poussin proved, that, if a and n are coprime, then
where φ(·) is the Euler's totient function. In other words, the primes are distributed evenly among the residue classes modulo n with gcd(a, n) = 1. This can be proved using similar methods used by Newman for his proof of the prime number theorem.
The Siegel–Walfisz theorem gives a good estimate for the distribution of primes in residue classes.
Read more about this topic: Prime Number Theorem
Famous quotes containing the words prime, number, theorem and/or arithmetic:
“No woman in my time will be Prime Minister or Chancellor or Foreign Secretarynot the top jobs. Anyway I wouldnt want to be Prime Minister. You have to give yourself 100%.”
—Margaret Thatcher (b. 1925)
“I think, for the rest of my life, I shall refrain from looking up things. It is the most ravenous time-snatcher I know. You pull one book from the shelf, which carries a hint or a reference that sends you posthaste to another book, and that to successive others. It is incredible, the number of books you hopefully open and disappointedly close, only to take down another with the same result.”
—Carolyn Wells (18621942)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)
“I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction.”
—Gottlob Frege (18481925)