History of The Asymptotic Law of Distribution of Prime Numbers and Its Proof
Based on the tables by Anton Felkel and Jurij Vega, Adrien-Marie Legendre conjectured in 1797 or 1798 that π(a) is approximated by the function a/(A ln(a) + B), where A and B are unspecified constants. In the second edition of his book on number theory (1808) he then made a more precise conjecture, with A = 1 and B = −1.08366. Carl Friedrich Gauss considered the same question: "Im Jahr 1792 oder 1793", according to his own recollection nearly sixty years later in a letter to Encke (1849), he wrote in his logarithm table (he was then 15 or 16) the short note "Primzahlen unter ". But Gauss never published this conjecture. In 1838 Johann Peter Gustav Lejeune Dirichlet came up with his own approximating function, the logarithmic integral li(x) (under the slightly different form of a series, which he communicated to Gauss). Both Legendre's and Dirichlet's formulas imply the same conjectured asymptotic equivalence of π(x) and x / ln(x) stated above, although it turned out that Dirichlet's approximation is considerably better if one considers the differences instead of quotients.
In two papers from 1848 and 1850, the Russian mathematician Pafnuty L'vovich Chebyshev attempted to prove the asymptotic law of distribution of prime numbers. His work is notable for the use of the zeta function ζ(s) (for real values of the argument "s", as are works of Leonhard Euler, as early as 1737) predating Riemann's celebrated memoir of 1859, and he succeeded in proving a slightly weaker form of the asymptotic law, namely, that if the limit of π(x)/(x/ln(x)) as x goes to infinity exists at all, then it is necessarily equal to one. He was able to prove unconditionally that this ratio is bounded above and below by two explicitly given constants near to 1 for all x. Although Chebyshev's paper did not prove the Prime Number Theorem, his estimates for π(x) were strong enough for him to prove Bertrand's postulate that there exists a prime number between n and 2n for any integer n ≥ 2.
Without doubt, the single most significant paper concerning the distribution of prime numbers was Riemann's 1859 memoir On the Number of Primes Less Than a Given Magnitude, the only paper he ever wrote on the subject. Riemann introduced revolutionary ideas into the subject, the chief of them being that the distribution of prime numbers is intimately connected with the zeros of the analytically extended Riemann zeta function of a complex variable. In particular, it is in this paper of Riemann that the idea to apply methods of complex analysis to the study of the real function π(x) originates. Extending these deep ideas of Riemann, two proofs of the asymptotic law of the distribution of prime numbers were obtained independently by Jacques Hadamard and Charles Jean de la Vallée-Poussin and appeared in the same year (1896). Both proofs used methods from complex analysis, establishing as a main step of the proof that the Riemann zeta function ζ(s) is non-zero for all complex values of the variable s that have the form s = 1 + it with t > 0.
During the 20th century, the theorem of Hadamard and de la Vallée-Poussin also became known as the Prime Number Theorem. Several different proofs of it were found, including the "elementary" proofs of Atle Selberg and Paul Erdős (1949). While the original proofs of Hadamard and de la Vallée-Poussin are long and elaborate, and later proofs have introduced various simplifications through the use of Tauberian theorems but remained difficult to digest, a surprisingly short proof was discovered in 1980 by American mathematician Donald J. Newman. Newman's proof is arguably the simplest known proof of the theorem, although it is non-elementary in the sense that it uses Cauchy's integral theorem from complex analysis.
Read more about this topic: Prime Number Theorem
Famous quotes containing the words history of, history, law, distribution, prime, numbers and/or proof:
“Philosophy of science without history of science is empty; history of science without philosophy of science is blind.”
—Imre Lakatos (19221974)
“There is a history in all mens lives,
Figuring the natures of the times deceased,
The which observed, a man may prophesy,
With a near aim, of the main chance of things
As yet not come to life.”
—William Shakespeare (15641616)
“The due process of law as we use it, I believe, rests squarely on the liberal idea of conflict and resolution.”
—June L. Trapp (b. 1930)
“The question for the country now is how to secure a more equal distribution of property among the people. There can be no republican institutions with vast masses of property permanently in a few hands, and large masses of voters without property.... Let no man get by inheritance, or by will, more than will produce at four per cent interest an income ... of fifteen thousand dollars] per year, or an estate of five hundred thousand dollars.”
—Rutherford Birchard Hayes (18221893)
“The Prime Minister has an absolute genius for putting flamboyant labels on empty luggage.”
—Aneurin Bevan (18971960)
“He bundles every forkful in its place,
And tags and numbers it for future reference,
So he can find and easily dislodge it
In the unloading. Silas does that well.
He takes it out in bunches like birds nests.”
—Robert Frost (18741963)
“In the reproof of chance
Lies the true proof of men.”
—William Shakespeare (15641616)