Prime-counting Function in Terms of The Logarithmic Integral
In a handwritten note on a reprint of his 1838 paper "Sur l'usage des séries infinies dans la théorie des nombres", which he mailed to Carl Friedrich Gauss, Johann Peter Gustav Lejeune Dirichlet conjectured (under a slightly different form appealing to a series rather than an integral) that an even better approximation to π(x) is given by the offset logarithmic integral function Li(x), defined by
Indeed, this integral is strongly suggestive of the notion that the 'density' of primes around t should be 1/lnt. This function is related to the logarithm by the asymptotic expansion
So, the prime number theorem can also be written as π(x) ~ Li(x). In fact, it follows from the proof of Hadamard and de la Vallée Poussin that
for some positive constant a, where O(…) is the big O notation. This has been improved to
Because of the connection between the Riemann zeta function and π(x), the Riemann hypothesis has considerable importance in number theory: if established, it would yield a far better estimate of the error involved in the prime number theorem than is available today. More specifically, Helge von Koch showed in 1901 that, if and only if the Riemann hypothesis is true, the error term in the above relation can be improved to
The constant involved in the big O notation was estimated in 1976 by Lowell Schoenfeld: assuming the Riemann hypothesis,
for all x ≥ 2657. He also derived a similar bound for the Chebyshev prime-counting function ψ:
for all x ≥ 73.2.
The logarithmic integral Li(x) is larger than π(x) for "small" values of x. This is because it is (in some sense) counting not primes, but prime powers, where a power pn of a prime p is counted as 1/n of a prime. This suggests that Li(x) should usually be larger than π(x) by roughly Li(x1/2)/2, and in particular should usually be larger than π(x). However, in 1914, J. E. Littlewood proved that this is not always the case. The first value of x where π(x) exceeds Li(x) is probably around x = 10316; see the article on Skewes' number for more details.
Read more about this topic: Prime Number Theorem
Famous quotes containing the words function, terms and/or integral:
“The fact remains that the human being in early childhood learns to consider one or the other aspect of bodily function as evil, shameful, or unsafe. There is not a culture which does not use a combination of these devils to develop, by way of counterpoint, its own style of faith, pride, certainty, and initiative.”
—Erik H. Erikson (19041994)
“As for the terms good and bad, they indicate no positive quality in things regarded in themselves, but are merely modes of thinking, or notions which we form from the comparison of things with one another. Thus one and the same thing can be at the same time good, bad, and indifferent. For instance music is good for him that is melancholy, bad for him who mourns; for him who is deaf, it is neither good nor bad.”
—Baruch (Benedict)
“Make the most of your regrets; never smother your sorrow, but tend and cherish it till it come to have a separate and integral interest. To regret deeply is to live afresh.”
—Henry David Thoreau (18171862)