Loss Function - Loss Functions in Bayesian Statistics

Loss Functions in Bayesian Statistics

One of the consequences of Bayesian inference is that in addition to experimental data, the loss function does not in itself wholly determine a decision. What is important is the relationship between the loss function and the prior probability. So it is possible to have two different loss functions which lead to the same decision when the prior probability distributions associated with each compensate for the details of each loss function.

Combining the three elements of the prior probability, the data, and the loss function then allows decisions to be based on maximizing the subjective expected utility, a concept introduced by Leonard J. Savage.

Read more about this topic:  Loss Function

Famous quotes containing the words loss, functions and/or statistics:

    Every farewell combines loss and new freedom.
    Mason Cooley (b. 1927)

    When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconscious—to get rid of boundaries, not to create them.
    Edward T. Hall (b. 1914)

    Maybe a nation that consumes as much booze and dope as we do and has our kind of divorce statistics should pipe down about “character issues.” Either that or just go ahead and determine the presidency with three-legged races and pie-eating contests. It would make better TV.
    —P.J. (Patrick Jake)