Harmonic Oscillator - Application To A Conservative Force

Application To A Conservative Force

The problem of the simple harmonic oscillator occurs frequently in physics, because a mass at equilibrium under the influence of any conservative force, in the limit of small motions, behaves as a simple harmonic oscillator.

A conservative force is one that has a potential energy function. The potential energy function of a harmonic oscillator is:

Given an arbitrary potential energy function, one can do a Taylor expansion in terms of around an energy minimum to model the behavior of small perturbations from equilibrium.

Because is a minimum, the first derivative evaluated at must be zero, so the linear term drops out:

The constant term V(x0) is arbitrary and thus may be dropped, and a coordinate transformation allows the form of the simple harmonic oscillator to be retrieved:

Thus, given an arbitrary potential energy function with a non-vanishing second derivative, one can use the solution to the simple harmonic oscillator to provide an approximate solution for small perturbations around the equilibrium point.

Read more about this topic:  Harmonic Oscillator

Famous quotes containing the words application to, application, conservative and/or force:

    Preaching is the expression of the moral sentiment in application to the duties of life.
    Ralph Waldo Emerson (1803–1882)

    If you would be a favourite of your king, address yourself to his weaknesses. An application to his reason will seldom prove very successful.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    I never dared be radical when young
    For fear it would make me conservative when old.
    Robert Frost (1874–1963)

    When we can drain the Ocean into mill-ponds, and bottle up the Force of Gravity, to be sold by retail, in gas jars; then may we hope to comprehend the infinitudes of man’s soul under formulas of Profit and Loss; and rule over this too, as over a patent engine, by checks, and valves, and balances.
    Thomas Carlyle (1795–1881)