Nuclear Shell Model

In nuclear physics and nuclear chemistry, the nuclear shell model is a model of the atomic nucleus which uses the Pauli exclusion principle to describe the structure of the nucleus in terms of energy levels. The first shell model was proposed by Dmitry Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following independent work by several physicists, most notably Eugene Paul Wigner, Maria Goeppert-Mayer and J. Hans D. Jensen, who shared the 1963 Nobel Prize in Physics for their contributions.

The shell model is partly analogous to the atomic shell model which describes the arrangement of electrons in an atom, in that a filled shell results in greater stability. When adding nucleons (protons or neutrons) to a nucleus, there are certain points where the binding energy of the next nucleon is significantly less than the last one. This observation, that there are certain magic numbers of nucleons: 2, 8, 20, 28, 50, 82, 126 which are more tightly bound than the next higher number, is the origin of the shell model.

Note that the shells exist for both protons and neutrons individually, so that we can speak of "magic nuclei" where one nucleon type is at a magic number, and "doubly magic nuclei", where both are. Due to some variations in orbital filling, the upper magic numbers are 126 and, speculatively, 184 for neutrons but only 114 for protons, playing a role in the search of the so-called island of stability. There have been found some semimagic numbers, notably Z=40 giving nuclear shell filling for the various elements; 16 may also be a magic number.

In order to get these numbers, the nuclear shell model starts from an average potential with a shape something between the square well and the harmonic oscillator. To this potential a spin orbit term is added. Even so, the total perturbation does not coincide with experiment, and an empirical spin orbit coupling, named the Nilsson Term, must be added with at least two or three different values of its coupling constant, depending on the nuclei being studied.

Nevertheless, the magic numbers of nucleons, as well as other properties, can be arrived at by approximating the model with a three-dimensional harmonic oscillator plus a spin-orbit interaction. A more realistic but also complicated potential is known as Woods Saxon potential.

Igal Talmi developed a method to obtain the information from experimental data and use it to calculate and predict energies which have not been measured. This method has been successfully used by many nuclear physicists and has led to deeper understanding of nuclear structure. The theory which gives a good description of these properties was developed. This description turned out to furnish the shell model basis of the elegant and successful Interacting boson model.

Read more about Nuclear Shell Model:  Deformed Harmonic Oscillator Approximated Model, Alpha Particle Model

Famous quotes containing the words nuclear, shell and/or model:

    We now recognize that abuse and neglect may be as frequent in nuclear families as love, protection, and commitment are in nonnuclear families.
    David Elkind (20th century)

    I was even more surprised at the power of the waves, exhibited on this shattered fragment, than I had been at the sight of the smaller fragments before. The largest timbers and iron braces were broken superfluously, and I saw that no material could withstand the power of the waves; that iron must go to pieces in such a case, and an iron vessel would be cracked up like an egg- shell on the rocks.
    Henry David Thoreau (1817–1862)

    ... if we look around us in social life and note down who are the faithful wives, the most patient and careful mothers, the most exemplary housekeepers, the model sisters, the wisest philanthropists, and the women of the most social influence, we will have to admit that most frequently they are women of cultivated minds, without which even warm hearts and good intentions are but partial influences.
    Mrs. H. O. Ward (1824–1899)