Special Cases
To make sense of the definition, it is helpful to consider what it means in relatively simple cases where the sequence is finite and begins or ends with 0.
- The sequence 0 → A → B is exact at A if and only if the map from A to B has kernel {0}, i.e. if and only if that map is a monomorphism (one-to-one).
- Dually, the sequence B → C → 0 is exact at C if and only if the image of the map from B to C is all of C, i.e. if and only if that map is an epimorphism (onto).
- A consequence of these last two facts is that the sequence 0 → X → Y → 0 is exact if and only if the map from X to Y is an isomorphism.
Important are short exact sequences, which are exact sequences of the form
By the above, we know that for any such short exact sequence, f is a monomorphism and g is an epimorphism. Furthermore, the image of f is equal to the kernel of g. It is helpful to think of A as a subobject of B with f being the embedding of A into B, and of C as the corresponding factor object B/A, with the map g being the natural projection from B to B/A (whose kernel is exactly A).
Read more about this topic: Exact Sequence
Famous quotes containing the words special and/or cases:
“The rebellion is against time pollution, the feeling that the essence of what makes life worth livingthe small moments, the special family getaways, the cookies in the oven, the weekend drives, the long dreamlike summers Mso much of this has been taken from us, or we have given it up. For what? Hitachi stereos? Club Med? Company cars? Racquetball? For fifteen-hour days and lousy day care?”
—Richard Louv (20th century)
“There are few cases in which mere popularity should be considered a proper test of merit; but the case of song-writing is, I think, one of the few.”
—Edgar Allan Poe (18091845)