An exact sequence is a concept in mathematics, especially in ring and module theory, homological algebra, as well as in differential geometry and group theory. An exact sequence is a sequence, either finite or infinite, of objects and morphisms between them such that the image of one morphism equals the kernel of the next.
Read more about Exact Sequence: Definition, Example, Special Cases, Facts, Applications of Exact Sequences
Famous quotes containing the words exact and/or sequence:
“If we define a sign as an exact reference, it must include symbol because a symbol is an exact reference too. The difference seems to be that a sign is an exact reference to something definite and a symbol an exact reference to something indefinite.”
—William York Tindall (19031981)
“Reminiscences, even extensive ones, do not always amount to an autobiography.... For autobiography has to do with time, with sequence and what makes up the continuous flow of life. Here, I am talking of a space, of moments and discontinuities. For even if months and years appear here, it is in the form they have in the moment of recollection. This strange formit may be called fleeting or eternalis in neither case the stuff that life is made of.”
—Walter Benjamin (18921940)