Combinatorial Game Theory - History

History

CGT arose in relation to the theory of impartial games, in which any play available to one player must be available to the other as well. One very important such game is nim, which can be solved completely. Nim is an impartial game for two players, and subject to the normal play condition, which means that a player who cannot move loses. In the 1930s, the Sprague-Grundy theorem showed that all impartial games are equivalent to heaps in nim, thus showing that major unifications are possible in games considered at a combinatorial level (in which detailed strategies matter, not just pay-offs).

In the 1960s, Elwyn R. Berlekamp, John H. Conway and Richard K. Guy jointly introduced the theory of a partisan game, in which the requirement that a play available to one player be available to both is relaxed. Their results were published in their book Winning Ways for your Mathematical Plays in 1982. However, the first book published on the subject was Conway's On Numbers and Games, also known as ONAG, which introduced the concept of surreal numbers and the generalization to games. On Numbers and Games was also a fruit of the collaboration between Berlekamp, Conway, and Guy.

Combinatorial games are generally, by convention, put into a form where one player wins when the other has no moves remaining. It is easy to convert any finite game with only two possible results into an equivalent one where this convention applies. One of the most important concepts in the theory of combinatorial games is that of the sum of two games, which is a game where each player may choose to move either in one game or the other at any point in the game, and a player wins when his opponent has no move in either game. This way of combining games leads to a rich and powerful mathematical structure.

John Conway states in ONAG that the inspiration for the theory of partisan games was based on his observation of the play in go endgames, which can often be decomposed into sums of simpler endgames isolated from each other in different parts of the board.

Read more about this topic:  Combinatorial Game Theory

Famous quotes containing the word history:

    All history attests that man has subjected woman to his will, used her as a means to promote his selfish gratification, to minister to his sensual pleasures, to be instrumental in promoting his comfort; but never has he desired to elevate her to that rank she was created to fill. He has done all he could to debase and enslave her mind; and now he looks triumphantly on the ruin he has wrought, and say, the being he has thus deeply injured is his inferior.
    Sarah M. Grimke (1792–1873)

    It is remarkable how closely the history of the apple tree is connected with that of man.
    Henry David Thoreau (1817–1862)

    I believe my ardour for invention springs from his loins. I can’t say that the brassiere will ever take as great a place in history as the steamboat, but I did invent it.
    Caresse Crosby (1892–1970)