Axiom of Pairing - Formal Statement

Formal Statement

In the formal language of the Zermelo–Fraenkel axioms, the axiom reads:

or in words:

Given any set A and any set B, there is a set C such that, given any set D, D is a member of C if and only if D is equal to A or D is equal to B.

or in simpler words:

Given two sets, there is a set whose members are exactly the two given sets.

Read more about this topic:  Axiom Of Pairing

Famous quotes containing the words formal and/or statement:

    True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....
    Marcel Proust (1871–1922)

    The force of truth that a statement imparts, then, its prominence among the hordes of recorded observations that I may optionally apply to my own life, depends, in addition to the sense that it is argumentatively defensible, on the sense that someone like me, and someone I like, whose voice is audible and who is at least notionally in the same room with me, does or can possibly hold it to be compellingly true.
    Nicholson Baker (b. 1957)