Algebraic Structure - Category Theory

Category Theory

Category theory is another tool for studying algebraic structures (see, for example, Mac Lane 1998). A category is a collection of objects with associated morphisms. Every algebraic structure has its own notion of homomorphism, namely any function compatible with the operation(s) defining the structure. In this way, every algebraic structure gives rise to a category. For example, the category of groups has all groups as objects and all group homomorphisms as morphisms. This concrete category may be seen as a category of sets with added category-theoretic structure. Likewise, the category of topological groups (whose morphisms are the continuous group homomorphisms) is a category of topological spaces with extra structure. A forgetful functor between categories of algebraic structures "forgets" a part of a structure.

There are various concepts in category theory that try to capture the algebraic character of a context, for instance

  • algebraic category
  • essentially algebraic category
  • presentable category
  • locally presentable category
  • monadic functors and categories
  • universal property.

Read more about this topic:  Algebraic Structure

Famous quotes containing the words category and/or theory:

    Despair is typical of those who do not understand the causes of evil, see no way out, and are incapable of struggle. The modern industrial proletariat does not belong to the category of such classes.
    Vladimir Ilyich Lenin (1870–1924)

    The theory of rights enables us to rise and overthrow obstacles, but not to found a strong and lasting accord between all the elements which compose the nation.
    Giuseppe Mazzini (1805–1872)