Even and Odd Functions

Even And Odd Functions

In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory of power series and Fourier series. They are named for the parity of the powers of the power functions which satisfy each condition: the function f(x) = xn is an even function if n is an even integer, and it is an odd function if n is an odd integer.

Read more about Even And Odd Functions:  Definition and Examples, Some Facts, Harmonics

Famous quotes containing the words odd and/or functions:

    Young people love what is interesting and odd, no matter how true or false it is. More mature minds love what is interesting and odd about truth. Fully mature intellects, finally, love truth, even when it appears plain and simple, boring to the ordinary person; for they have noticed that truth tends to reveal its highest wisdom in the guise of simplicity.
    Friedrich Nietzsche (1844–1900)

    One of the most highly valued functions of used parents these days is to be the villains of their children’s lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents’ failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.
    Frank Pittman (20th century)