In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation.
Read more about Congruence Relation: Basic Example, Definition, Relation With Homomorphisms, Congruences of Groups, and Normal Subgroups and Ideals, Universal Algebra
Famous quotes containing the words congruence and/or relation:
“As for butterflies, I can hardly conceive
of ones attending upon you; but to question
the congruence of the complement is vain, if it exists.”
—Marianne Moore (18871972)
“Among the most valuable but least appreciated experiences parenthood can provide are the opportunities it offers for exploring, reliving, and resolving ones own childhood problems in the context of ones relation to ones child.”
—Bruno Bettelheim (20th century)