Power Series Solution Of Differential Equations
In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.
Read more about Power Series Solution Of Differential Equations: Method, Example Usage, Nonlinear Equations
Famous quotes containing the words power, series, solution and/or differential:
“Doublethink means the power of holding two contradictory beliefs in ones mind simultaneously, and accepting both of them.”
—George Orwell (19031950)
“I look on trade and every mechanical craft as education also. But let me discriminate what is precious herein. There is in each of these works an act of invention, an intellectual step, or short series of steps taken; that act or step is the spiritual act; all the rest is mere repetition of the same a thousand times.”
—Ralph Waldo Emerson (18031882)
“The Settlement ... is an experimental effort to aid in the solution of the social and industrial problems which are engendered by the modern conditions of life in a great city. It insists that these problems are not confined to any one portion of the city. It is an attempt to relieve, at the same time, the overaccumulation at one end of society and the destitution at the other ...”
—Jane Addams (18601935)
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)