Power Series Solution of Differential Equations - Example Usage

Example Usage

Let us look at the Hermite differential equation,

We can try to construct a series solution

Substituting these in the differential equation


\begin{align}
& {} \quad \sum_{k=0}^\infty k(k-1)A_kz^{k-2}-2z\sum_{k=0}^\infty kA_kz^{k-1}+\sum_{k=0}^\infty A_kz^k=0 \\
& =\sum_{k=0}^\infty k(k-1)A_kz^{k-2}-\sum_{k=0}^\infty 2kA_kz^k+\sum_{k=0}^\infty A_kz^k
\end{align}

Making a shift on the first sum


\begin{align}
& = \sum_{k+2=0}^\infty (k+2)((k+2)-1)A_{k+2}z^{(k+2)-2}-\sum_{k=0}^\infty 2kA_kz^k+\sum_{k=0}^\infty A_kz^k \\
& =\sum_{k=-2}^\infty (k+2)(k+1)A_{k+2}z^k-\sum_{k=0}^\infty 2kA_kz^k+\sum_{k=0}^\infty A_kz^k \\
& =(0)(-1)A_0 z^{-2} + (1)(0)A_{1}z^{-1}+\sum_{k=0}^\infty (k+2)(k+1)A_{k+2}z^k-\sum_{k=0}^\infty 2kA_kz^k+\sum_{k=0}^\infty A_kz^k \\
& =\sum_{k=0}^\infty (k+2)(k+1)A_{k+2}z^k-\sum_{k=0}^\infty 2kA_kz^k+\sum_{k=0}^\infty A_kz^k \\
& =\sum_{k=0}^\infty \left((k+2)(k+1)A_{k+2}+(-2k+1)A_k\right)z^k
\end{align}

If this series is a solution, then all these coefficients must be zero, so:

We can rearrange this to get a recurrence relation for Ak+2.

Now, we have

We can determine A0 and A1 if there are initial conditions, i.e. if we have an initial value problem.

So we have


\begin{align}
A_4 & ={1\over 4}A_2 = \left({1\over 4}\right)\left({-1 \over 2}\right)A_0 = {-1 \over 8}A_0 \\
A_5 & ={1\over 4}A_3 = \left({1\over 4}\right)\left({1 \over 6}\right)A_1 = {1 \over 24}A_1 \\
A_6 & = {7\over 30}A_4 = \left({7\over 30}\right)\left({-1 \over 8}\right)A_0 = {-7 \over 240}A_0 \\
A_7 & = {3\over 14}A_5 = \left({3\over 14}\right)\left({1 \over 24}\right)A_1 = {1 \over 112}A_1
\end{align}

and the series solution is


\begin{align}
f & = A_0x^0+A_1x^1+A_2x^2+A_3x^3+A_4x^4+A_5x^5+A_6x^6+A_7x^7+\cdots \\
& = A_0x^0 + A_1x^1 + {-1\over 2}A_0x^2 + {1\over 6}A_1x^3 + {-1 \over 8}A_0x^4 + {1 \over 24}A_1x^5 + {-7 \over 240}A_0x^6 + {1 \over 112}A_1x^7 + \cdots \\
& = A_0x^0 + {-1\over 2}A_0x^2 + {-1 \over 8}A_0x^4 + {-7 \over 240}A_0x^6 + A_1x + {1\over 6}A_1x^3 + {1 \over 24}A_1x^5 + {1 \over 112}A_1x^7 + \cdots
\end{align}

which we can break up into the sum of two linearly independent series solutions:

which can be further simplified by the use of hypergeometric series.

Read more about this topic:  Power Series Solution Of Differential Equations

Famous quotes containing the word usage:

    ...Often the accurate answer to a usage question begins, “It depends.” And what it depends on most often is where you are, who you are, who your listeners or readers are, and what your purpose in speaking or writing is.
    Kenneth G. Wilson (b. 1923)

    I am using it [the word ‘perceive’] here in such a way that to say of an object that it is perceived does not entail saying that it exists in any sense at all. And this is a perfectly correct and familiar usage of the word.
    —A.J. (Alfred Jules)