Partial Order Approach
Let A be a set with a partial order ≤, and let x and y be two elements in A. An element z of A is the meet (or greatest lower bound or infimum) of x and y, if the following two conditions are satisfied:
- z ≤ x and z ≤ y (i.e., z is a lower bound of x and y).
- For any w in A, such that w ≤ x and w ≤ y, we have w ≤ z (i.e., z is greater than or equal to any other lower bound of x and y).
If there is a meet of x and y, then indeed it is unique, since if both z and z′ are greatest lower bounds of x and y, then z ≤ z′ and z′ ≤ z, whence indeed z = z′. If the meet does exist, it is denoted x ∧ y. Some pairs of elements in A may lack a meet, either since they have no lower bound at all, or since none of their lower bounds is greater than all the others. If all pairs of elements have meets, then indeed the meet is a binary operation on A, and it is easy to see that this operation fulfils the following three conditions: For any elements x, y, and z in A,
- a. x ∧ y = y ∧ x (commutativity),
- b. x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity), and
- c. x ∧ x = x (idempotency).
Read more about this topic: Join And Meet
Famous quotes containing the words partial order, partial, order and/or approach:
“Both the man of science and the man of art live always at the edge of mystery, surrounded by it. Both, as a measure of their creation, have always had to do with the harmonization of what is new with what is familiar, with the balance between novelty and synthesis, with the struggle to make partial order in total chaos.... This cannot be an easy life.”
—J. Robert Oppenheimer (19041967)
“The one-eyed man will be King in the country of the blind only if he arrives there in full possession of his partial facultiesthat is, providing he is perfectly aware of the precise nature of sight and does not confuse it with second sight ... nor with madness.”
—Angela Carter (19401992)
“The general feeling was, and for a long time remained, that one had several children in order to keep just a few. As late as the seventeenth century . . . people could not allow themselves to become too attached to something that was regarded as a probable loss. This is the reason for certain remarks which shock our present-day sensibility, such as Montaignes observation, I have lost two or three children in their infancy, not without regret, but without great sorrow.”
—Philippe Ariés (20th century)
“I approach these questions unwillingly, as it wounds, but no cure can be effected without touching upon and handling them.”
—Titus Livius (Livy)