In mathematics, especially order theory, a partially ordered set (or poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation that indicates that, for certain pairs of elements in the set, one of the elements precedes the other. Such a relation is called a partial order to reflect the fact that not every pair of elements need be related: for some pairs, it may be that neither element precedes the other in the poset. Thus, partial orders generalize the more familiar total orders, in which every pair is related. A finite poset can be visualized through its Hasse diagram, which depicts the ordering relation.
A familiar real-life example of a partially ordered set is a collection of people ordered by genealogical descendancy. Some pairs of people bear the descendant-ancestor relationship, but other pairs bear no such relationship.
Read more about Partially Ordered Set: Formal Definition, Examples, Extrema, Orders On The Cartesian Product of Partially Ordered Sets, Strict and Non-strict Partial Orders, Inverse and Order Dual, Number of Partial Orders, Linear Extension, In Category Theory, Partial Orders in Topological Spaces, Interval
Famous quotes containing the words partially, ordered and/or set:
“He who gives himself entirely to his fellow-men appears to them useless and selfish; but he who gives himself partially to them is pronounced a benefactor and philanthropist.”
—Henry David Thoreau (18171862)
“In spite of our worries to the contrary, children are still being born with the innate ability to learn spontaneously, and neither they nor their parents need the sixteen-page instructional manual that came with a rattle ordered for our baby boy!”
—Neil Kurshan (20th century)
“Hence anyone who seeks for the true cause of miracles, and strives to understand natural phenomena as an intelligent being, and not to gaze at them as a fool, is set down and denounced as a impious heretic by those, whom the masses adore as the interpreters of nature and the gods.”
—Baruch (Benedict)