Unique Factorization Domain
In mathematics, a unique factorization domain (UFD) is a commutative ring in which every non-unit element, with special exceptions, can be uniquely written as a product of prime elements (or irreducible elements), analogous to the fundamental theorem of arithmetic for the integers. UFDs are sometimes called factorial rings, following the terminology of Bourbaki.
Note that unique factorization domains appear in the following chain of class inclusions:
- Commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields
Read more about Unique Factorization Domain: Definition, Examples, Non-examples, Properties, Equivalent Conditions For A Ring To Be A UFD
Famous quotes containing the words unique and/or domain:
“The parent must not give in to his desire to try to create the child he would like to have, but rather help the child to developin his own good timeto the fullest, into what he wishes to be and can be, in line with his natural endowment and as the consequence of his unique life in history.”
—Bruno Bettelheim (20th century)
“Every sign is subject to the criteria of ideological evaluation.... The domain of ideology coincides with the domain of signs. They equate with one another. Wherever a sign is present, ideology is present, too. Everything ideological possesses semiotic value.”
—V.N. (Valintin Nikolaevic)