Unique Factorization Domain
In mathematics, a unique factorization domain (UFD) is a commutative ring in which every non-unit element, with special exceptions, can be uniquely written as a product of prime elements (or irreducible elements), analogous to the fundamental theorem of arithmetic for the integers. UFDs are sometimes called factorial rings, following the terminology of Bourbaki.
Note that unique factorization domains appear in the following chain of class inclusions:
- Commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields
Read more about Unique Factorization Domain: Definition, Examples, Non-examples, Properties, Equivalent Conditions For A Ring To Be A UFD
Famous quotes containing the words unique and/or domain:
“The unique eludes us; yet we remain faithful to the ideal of it; and in spite of sense and of our merely abstract thinking, it becomes for us the most real thing in the actual world, although for us it is the elusive goal of an infinite quest.”
—Josiah Royce (18551916)
“In the domain of Political Economy, free scientific inquiry meets not merely the same enemies as in all other domains. The peculiar nature of the material it deals with, summons as foes into the field of battle the most violent, mean and malignant passions of the human breast, the Furies of private interest.”
—Karl Marx (18181883)