Definition
Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero x of R can be written as a product (an empty product for the unit) of irreducible elements pi of R and a unit u:
- x = u p1 p2 ... pn with n≥0
and this representation is unique in the following sense: If q1,...,qm are irreducible elements of R and w is a unit such that
- x = w q1 q2 ... qm with m≥0,
then m = n and there exists a bijective map φ : {1,...,n} -> {1,...,m} such that pi is associated to qφ(i) for i ∈ {1, ..., n}.
The uniqueness part is usually hard to verify, which is why the following equivalent definition is useful:
- A unique factorization domain is an integral domain R in which every non-zero element can be written as a product of a unit and prime elements of R.
Read more about this topic: Unique Factorization Domain
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)