Tensor Product - Relation With The Dual Space

Relation With The Dual Space

In the discussion on the universal property, replacing Z by the underlying scalar field of V and W yields that the space (VW)* (the dual space of VW, containing all linear functionals on that space) is naturally identified with the space of all bilinear functionals on V × W In other words, every bilinear functional is a functional on the tensor product, and vice versa.

Whenever V and W are finite dimensional, there is a natural isomorphism between V* ⊗ W* and (VW)*, whereas for vector spaces of arbitrary dimension we only have an inclusion V* ⊗ W* ⊂ (VW)*. So, the tensors of the linear functionals are bilinear functionals. This gives us a new way to look at the space of bilinear functionals, as a tensor product itself.

Read more about this topic:  Tensor Product

Famous quotes containing the words relation with the, relation, dual and/or space:

    There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.
    Umberto Eco (b. 1932)

    You see, I am alive, I am alive
    I stand in good relation to the earth
    I stand in good relation to the gods
    I stand in good relation to all that is beautiful
    I stand in good relation to the daughter of Tsen-tainte
    You see, I am alive, I am alive
    N. Scott Momaday (b. 1934)

    Thee for my recitative,
    Thee in the driving storm even as now, the snow, the winter-day
    declining,
    Thee in thy panoply, thy measur’d dual throbbing and thy beat
    convulsive,
    Thy black cylindric body, golden brass and silvery steel,
    Walt Whitman (1819–1892)

    Let the space under the first storey be dark, let the water
    lap the stone posts, and vivid green slime glimmer
    upon them; let a boat be kept there.
    Denise Levertov (b. 1923)