In linear algebra, the outer product typically refers to the tensor product of two vectors. The result of applying the outer product to a pair of vectors is a matrix. The name contrasts with the inner product, which takes as input a pair of vectors and produces a scalar.
The outer product of vectors can be also regarded as a special case of the Kronecker product of matrices.
Some authors use the expression "outer product of tensors" as a synonym of "tensor product". The outer product is also a higher-order function in some computer programming languages such as APL and Mathematica.
Read more about Outer Product: Definition (matrix Multiplication), Definition (abstract), Applications
Famous quotes containing the words outer and/or product:
“The use of natural history is to give us aid in supernatural history: the use of the outer creation, to give us language for the beings and changes of the inward creation.”
—Ralph Waldo Emerson (18031882)
“To [secure] to each labourer the whole product of his labour, or as nearly as possible, is a most worthy object of any good government.”
—Abraham Lincoln (18091865)