Definition (matrix Multiplication)
The outer product u ⊗ v is equivalent to a matrix multiplication uvT, provided that u is represented as a m × 1 column vector and v as a n × 1 column vector (which makes vT a row vector). For instance, if m = 4 and n = 3, then
For complex vectors, it is customary to use the conjugate transpose of v (denoted vH):
Read more about this topic: Outer Product
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
Related Phrases
Related Words