State Space Representation - Linear Systems

Linear Systems

The most general state-space representation of a linear system with inputs, outputs and state variables is written in the following form:

where:

is called the "state vector", ;
is called the "output vector", ;
is called the "input (or control) vector", ;
is the "state matrix", ,
is the "input matrix", ,
is the "output matrix", ,
is the "feedthrough (or feedforward) matrix" (in cases where the system model does not have a direct feedthrough, is the zero matrix), ,
.

In this general formulation, all matrices are allowed to be time-variant (i.e. their elements can depend on time); however, in the common LTI case, matrices will be time invariant. The time variable can be continuous (e.g. ) or discrete (e.g. ). In the latter case, the time variable is usually used instead of . Hybrid systems allow for time domains that have both continuous and discrete parts. Depending on the assumptions taken, the state-space model representation can assume the following forms:

System type State-space model
Continuous time-invariant
Continuous time-variant
Explicit discrete time-invariant
Explicit discrete time-variant
Laplace domain of
continuous time-invariant

Z-domain of
discrete time-invariant

Read more about this topic:  State Space Representation

Famous quotes containing the word systems:

    We have done scant justice to the reasonableness of cannibalism. There are in fact so many and such excellent motives possible to it that mankind has never been able to fit all of them into one universal scheme, and has accordingly contrived various diverse and contradictory systems the better to display its virtues.
    Ruth Benedict (1887–1948)