State Space Representation

In control engineering, a state space representation is a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs, outputs and states, the variables are expressed as vectors. Additionally, if the dynamical system is linear and time invariant, the differential and algebraic equations may be written in matrix form. The state space representation (also known as the "time-domain approach") provides a convenient and compact way to model and analyze systems with multiple inputs and outputs. With inputs and outputs, we would otherwise have to write down Laplace transforms to encode all the information about a system. Unlike the frequency domain approach, the use of the state space representation is not limited to systems with linear components and zero initial conditions. "State space" refers to the space whose axes are the state variables. The state of the system can be represented as a vector within that space.

Read more about State Space Representation:  State Variables, Linear Systems, Nonlinear Systems

Famous quotes containing the words state and/or space:

    In a Kelton church, when a heated argument once began at morning services, a devout old deacon arose from his seat in the ‘amen corner’ and announced he was going to do for the church what the devil had never done—leave it.
    —Administration in the State of Sout, U.S. public relief program (1935-1943)

    I would have broke mine eye-strings, cracked them, but
    To look upon him, till the diminution
    Of space had pointed him sharp as my needle;
    Nay, followed him till he had melted from
    The smallness of a gnat to air, and then
    Have turned mine eye and wept.
    William Shakespeare (1564–1616)