Squaring The Circle - Impossibility

Impossibility

The solution of the problem of squaring the circle by compass and straightedge demands construction of the number, and the impossibility of this undertaking follows from the fact that pi is a transcendental (non-algebraic and therefore non-constructible) number. If the problem of the quadrature of the circle is solved using only compass and straightedge, then an algebraic value of pi would be found, which is impossible. Johann Heinrich Lambert conjectured that pi was transcendental in 1768 in the same paper he proved its irrationality, even before the existence of transcendental numbers was proven. It was not until 1882 that Ferdinand von Lindemann proved its transcendence.

The transcendence of pi implies the impossibility of exactly "circling" the square, as well as of squaring the circle.

It is possible to construct a square with an area arbitrarily close to that of a given circle. If a rational number is used as an approximation of pi, then squaring the circle becomes possible, depending on the values chosen. However, this is only an approximation and does not meet the constraints of the ancient rules for solving the problem. Several mathematicians have demonstrated workable procedures based on a variety of approximations.

Bending the rules by allowing an infinite number of compass-and-straightedge operations or by performing the operations on certain non-Euclidean spaces also makes squaring the circle possible. For example, although the circle cannot be squared in Euclidean space, it can be in Gauss–Bolyai–Lobachevsky space. Indeed, even the preceding phrase is overoptimistic. There are no squares as such in the hyperbolic plane, although there are regular quadrilaterals, meaning quadrilaterals with all sides congruent and all angles congruent (but these angles are strictly smaller than right angles). There exist, in the hyperbolic plane, (countably) infinitely many pairs of constructible circles and constructible regular quadrilaterals of equal area. However, there is no method for starting with a regular quadrilateral and constructing the circle of equal area, and there is no method for starting with a circle and constructing a regular quadrilateral of equal area (even when the circle has small enough radius such that a regular quadrilateral of equal area exists).

Read more about this topic:  Squaring The Circle