Sophie Germain Prime - Application in (pseudo-)random Number Generation

Application in (pseudo-)random Number Generation

Sophie Germain primes have a practical application in the generation of pseudo-random numbers. The decimal expansion of 1/q will produce a stream of q − 1 pseudo-random digits, if q is the safe prime of a Sophie Germain prime p, with p congruent to 3, 9, or 11 (mod 20). Thus “suitable” prime numbers q are 7, 23, 47, 59, 167, 179, etc. (corresponding to p = 3, 11, 23, 29, 83, 89, etc.). The result is a stream of length q − 1 digits (including leading zeros). So, for example, using q = 23 generates the pseudo-random digits 0, 4, 3, 4, 7, 8, 2, 6, 0, 8, 6, 9, 5, 6, 5, 2, 1, 7, 3, 9, 1, 3. Note that these digits are not appropriate for cryptographic purposes, as the value of each can be derived from its predecessor in the digit-stream.

Read more about this topic:  Sophie Germain Prime

Famous quotes containing the words application, number and/or generation:

    I conceive that the leading characteristic of the nineteenth century has been the rapid growth of the scientific spirit, the consequent application of scientific methods of investigation to all the problems with which the human mind is occupied, and the correlative rejection of traditional beliefs which have proved their incompetence to bear such investigation.
    Thomas Henry Huxley (1825–95)

    The two great points of difference between a democracy and a republic are: first, the delegation of the government, in the latter, to a small number of citizens elected by the rest; secondly, the greater number of citizens and greater sphere of country over which the latter may be extended.
    James Madison (1751–1836)

    The world is never the same as it was.... And that’s as it should be. Every generation has the obligation to make the preceding generation irrelevant. It happens in little ways: no longer knowing the names of bands or even recognizing their sounds of music; no longer implicitly understanding life’s rules: wearing plaid Bermuda shorts to the grocery and not giving it another thought.
    Jim Shahin (20th century)