Pronic Number

A pronic number, oblong number, rectangular number or heteromecic number, is a number which is the product of two consecutive integers, that is, n (n + 1). The n-th pronic number is twice the n-th triangular number and n more than the n-th square number. The first few pronic numbers (sequence A002378 in OEIS) are:

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462 …

These numbers are sometimes called oblong because they are analogous to polygonal numbers in this way:







1×2 2×3 3×4 4×5

Pronic numbers can also be expressed as n² + n. The n-th pronic number is the sum of the first n even integers, as well as the difference between (2n − 1)² and the n-th centered hexagonal number.

All pronic numbers are even, therefore 2 is the only prime pronic number. It is also the only pronic number in the Fibonacci sequence and the only pronic Lucas number.

The number of off-diagonal entries in a square matrix is always a pronic number.

The fact that consecutive integers are coprime and that a pronic number is the product of two consecutive integers leads to a number of properties. Each distinct prime factor of a pronic number is present in only one of its factors. Thus a pronic number is squarefree if and only if n and n + 1 are. The number of distinct prime factors of a pronic number is the sum of the number of distinct prime factors of n and n + 1.

Famous quotes containing the word number:

    ... is it not clear that to give to such women as desire it and can devote themselves to literary and scientific pursuits all the advantages enjoyed by men of the same class will lessen essentially the number of thoughtless, idle, vain and frivolous women and thus secure the [sic] society the services of those who now hang as dead weight?
    Sarah M. Grimke (1792–1873)