In number theory, a branch of mathematics, a highly cototient number is a positive integer k which is above one and has more solutions to the equation
- x − φ(x) = k,
than any other integer below k and above one. Here, φ is Euler's totient function. There are infinitely many solutions to the equation for k = 1 so this value is excluded in the definition. The first few highly cototient numbers are:
- 2, 4, 8, 23, 35, 47, 59, 63, 83, 89, 113, 119, 167, 209, 269, 299, 329, 389, 419, 509, 629, 659, 779, 839, 1049, 1169, 1259, 1469, 1649, 1679, 1889 (sequence A100827 in OEIS).
There are many odd highly cototient numbers. In fact, after 8, all the numbers listed above are odd, and after 167 all the numbers listed above are congruent to 9 modulo 10.
The concept is somewhat analogous to that of highly composite numbers. Just as there are infinitely many highly composite numbers, there are also infinitely many highly cototient numbers. Computations become harder, since integer factorization does, as the numbers get larger.
Read more about Highly Cototient Number: Primes
Famous quotes containing the words highly and/or number:
“Once the sin against God was the greatest sin, but God died, and so these sinners died as well. To sin against the earth is now the most terrible thing, and to esteem the entrails of the unknowable more highly than the meaning of the earth.”
—Friedrich Nietzsche (18441900)
“The two great points of difference between a democracy and a republic are: first, the delegation of the government, in the latter, to a small number of citizens elected by the rest; secondly, the greater number of citizens and greater sphere of country over which the latter may be extended.”
—James Madison (17511836)