Sequence - Infinite Sequences in Theoretical Computer Science

Infinite Sequences in Theoretical Computer Science

Infinite sequences of digits (or characters) drawn from a finite alphabet are of particular interest in theoretical computer science. They are often referred to simply as sequences or streams, as opposed to finite strings. Infinite binary sequences, for instance, are infinite sequences of bits (characters drawn from the alphabet {0,1}). The set C = {0, 1}∞ of all infinite, binary sequences is sometimes called the Cantor space.

An infinite binary sequence can represent a formal language (a set of strings) by setting the n th bit of the sequence to 1 if and only if the n th string (in shortlex order) is in the language. Therefore, the study of complexity classes, which are sets of languages, may be regarded as studying sets of infinite sequences.

An infinite sequence drawn from the alphabet {0, 1, ..., b−1} may also represent a real number expressed in the base-b positional number system. This equivalence is often used to bring the techniques of real analysis to bear on complexity classes.

Read more about this topic:  Sequence

Famous quotes containing the words infinite, theoretical, computer and/or science:

    Mary McDonald, you giggled as you passed—
    I wondered what the boy with hairy chest
    Carved on the wall of his inexpensive spirit
    Memorial to your infinite unrest.
    Allen Tate (1899–1979)

    The hypothesis I wish to advance is that ... the language of morality is in ... grave disorder.... What we possess, if this is true, are the fragments of a conceptual scheme, parts of which now lack those contexts from which their significance derived. We possess indeed simulacra of morality, we continue to use many of the key expressions. But we have—very largely if not entirely—lost our comprehension, both theoretical and practical, of morality.
    Alasdair Chalmers MacIntyre (b. 1929)

    What, then, is the basic difference between today’s computer and an intelligent being? It is that the computer can be made to see but not to perceive. What matters here is not that the computer is without consciousness but that thus far it is incapable of the spontaneous grasp of pattern—a capacity essential to perception and intelligence.
    Rudolf Arnheim (b. 1904)

    Political liberty, the peace of a nation, and science itself are gifts for which Fate demands a heavy tax in blood!
    Honoré De Balzac (1799–1850)