In mathematics, the random Fibonacci sequence is a stochastic analogue of the Fibonacci sequence defined by the recurrence relation fn = fn−1 ± fn−2, where the signs + or − are chosen at random with equal probability 1/2, independently for different n. By a theorem of Harry Kesten and Hillel Fürstenberg, random recurrent sequences of this kind grow at a certain exponential rate, but it is difficult to compute the rate explicitly. In 1999, Divakar Viswanath showed that the growth rate of the random Fibonacci sequence is equal to 1.1319882487943…, a mathematical constant that was later named Viswanath's constant.
Read more about Random Fibonacci Sequence: Description, Growth Rate, Related Work
Famous quotes containing the words random and/or sequence:
“There is a potential 4-6 percentage point net gain for the President [George Bush] by replacing Dan Quayle on the ticket with someone of neutral stature.”
—Mary Matalin, U.S. Republican political advisor, author, and James Carville b. 1946, U.S. Democratic political advisor, author. Alls Fair: Love, War, and Running for President, p. 205, Random House (1994)
“It isnt that you subordinate your ideas to the force of the facts in autobiography but that you construct a sequence of stories to bind up the facts with a persuasive hypothesis that unravels your historys meaning.”
—Philip Roth (b. 1933)