Definition
The quantum Fourier transform is the classical discrete Fourier transform applied to the vector of amplitudes of a quantum state. The classical (unitary) Fourier transform acts on a vector in, (x0, ..., xN−1) and maps it to the vector (y0, ..., yN−1) according to the formula:
where is a primitive Nth root of unity.
Similarly, the quantum Fourier transform acts on a quantum state and maps it to a quantum state according to the formula:
- .
This can also be expressed as the map
- .
Equivalently, the quantum Fourier transform can be viewed as a unitary matrix acting on quantum state vectors, where the unitary matrix is given by
.
Read more about this topic: Quantum Fourier Transform
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)