Quantile Function - Non-linear Differential Equations For Quantile Functions

Non-linear Differential Equations For Quantile Functions

The non-linear ordinary differential equation given for normal distribution is a special case of that available for any quantile function whose second derivative exists. In general the equation for a quantile, Q(p), may be given. It is

augmented by suitable boundary conditions, where

and ƒ(x) is the probability density function. The forms of this equation, and its classical analysis by series and asymptotic solutions, for the cases of the normal, Student, gamma and beta distributions has been elucidated by Steinbrecher and Shaw (2008). Such solutions provide accurate benchmarks, and in the case of the Student, suitable series for live Monte Carlo use.

Read more about this topic:  Quantile Function

Famous quotes containing the words differential and/or functions:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    Nobody is so constituted as to be able to live everywhere and anywhere; and he who has great duties to perform, which lay claim to all his strength, has, in this respect, a very limited choice. The influence of climate upon the bodily functions ... extends so far, that a blunder in the choice of locality and climate is able not only to alienate a man from his actual duty, but also to withhold it from him altogether, so that he never even comes face to face with it.
    Friedrich Nietzsche (1844–1900)