Quadratic Variation - Definition

Definition

Suppose that Xt is a real-valued stochastic process defined on a probability space and with time index t ranging over the non-negative real numbers. Its quadratic variation is the process, written as t, defined as

where P ranges over partitions of the interval and the norm of the partition P is the mesh. This limit, if it exists, is defined using convergence in probability. Note that a process may be of finite quadratic variation in the sense of the definition given here and its paths be nonetheless a.s. of infinite quadratic variation for every t>0 in the classical sense of taking the supremum of the sum over all partitions; this is in particular the case for Brownian Motion.

More generally, the quadratic covariation (or quadratic cross-variance) of two processes X and Y is

The quadratic covariation may be written in terms of the quadratic variation by the polarization identity:

Read more about this topic:  Quadratic Variation

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)