Poisson Distribution - Definition

Definition

A discrete stochastic variable X is said to have a Poisson distribution with parameter λ>0, if for k = 0, 1, 2, ... the probability mass function of X is given by:

where

  • e is the base of the natural logarithm (e = 2.71828...)
  • k! is the factorial of k.

The positive real number λ is equal to the expected value of X, but also to the variance:

The Poisson distribution can be applied to systems with a large number of possible events, each of which is rare. The Poisson distribution is sometimes called a Poissonian.

Read more about this topic:  Poisson Distribution

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)