Partial Function

In mathematics, a partial function from X to Y is a function ƒ: X' → Y, where X' is a subset of X. It generalizes the concept of a function by not forcing f to map every element of X to an element of Y (only some subset X' of X). If X' = X, then ƒ is called a total function and is equivalent to a function. Partial functions are often used when the exact domain, X', is not known (e.g. many functions in computability theory).

Specifically, we will say that for any xX, either:

  • ƒ(x) = yY (it is defined as a single element in Y) or
  • ƒ(x) is undefined.

For example we can consider the square root function restricted to the integers

Thus g(n) is only defined for n that are perfect squares (i.e. 0, 1, 4, 9, 16, ...). So, g(25) = 5, but g(26) is undefined.

Read more about Partial Function:  Domain of A Partial Function, Total Function, Discussion and Examples

Famous quotes containing the words partial and/or function:

    Both the man of science and the man of art live always at the edge of mystery, surrounded by it. Both, as a measure of their creation, have always had to do with the harmonization of what is new with what is familiar, with the balance between novelty and synthesis, with the struggle to make partial order in total chaos.... This cannot be an easy life.
    J. Robert Oppenheimer (1904–1967)

    Our father has an even more important function than modeling manhood for us. He is also the authority to let us relax the requirements of the masculine model: if our father accepts us, then that declares us masculine enough to join the company of men. We, in effect, have our diploma in masculinity and can go on to develop other skills.
    Frank Pittman (20th century)