Partial Fraction - Application To Symbolic Integration

Application To Symbolic Integration

For the purpose of symbolic integration, the preceding result may be refined into

Let ƒ and g be nonzero polynomials over a field K. Write g as a product of powers of pairwise coprime polynomials which have no multiple root in an algebraically closed field:

There are (unique) polynomials b and c ij with deg c ij < deg p i such that
\frac{f}{g}=b+\sum_{i=1}^k\sum_{j=2}^{n_i}\left(\frac{c_{ij}}{p_i^{j-1}}\right)' +
\sum_{i=1}^k \frac{c_{i1}}{p_i}.
where denotes the derivative of

This reduces the computation of the antiderivative of a rational function to the integration of the last sum, with is called the logarithmic part, because its antiderivative is a linear combination of logarithms.

Read more about this topic:  Partial Fraction

Famous quotes containing the words application to, application, symbolic and/or integration:

    If you would be a favourite of your king, address yourself to his weaknesses. An application to his reason will seldom prove very successful.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    We will not be imposed upon by this vast application of forces. We believe that most things will have to be accomplished still by the application called Industry. We are rather pleased, after all, to consider the small private, but both constant and accumulated, force which stands behind every spade in the field. This it is that makes the valleys shine, and the deserts really bloom.
    Henry David Thoreau (1817–1862)

    An ancient bridge, and a more ancient tower,
    A farmhouse that is sheltered by its wall,
    An acre of stony ground,
    Where the symbolic rose can break in flower,
    Old ragged elms, old thorns innumerable....
    William Butler Yeats (1865–1939)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)