Partial Fraction

Partial Fraction

In algebra, the partial fraction decomposition or partial fraction expansion is a procedure used to reduce the degree of either the numerator or the denominator of a rational function (also known as a rational algebraic fraction).

In symbols, one can use partial fraction expansion to change a rational function in the form

where ƒ and g are polynomials, into a function of the form

where gj (x) are polynomials that are factors of g(x), and are in general of lower degree. Thus the partial fraction decomposition may be seen as the inverse procedure of the more elementary operation of addition of algebraic fractions, that produces a single rational function with a numerator and denominator usually of high degree. The full decomposition pushes the reduction as far as it will go: in other words, the factorization of g is used as much as possible. Thus, the outcome of a full partial fraction expansion expresses that function as a sum of fractions, where:

  • the denominator of each term is a power of an irreducible (not factorable) polynomial and
  • the numerator is a polynomial of smaller degree than that irreducible polynomial. To decrease the degree of the numerator directly, the Euclidean algorithm can be used, but in fact if ƒ already has lower degree than g this isn't helpful.

The main motivation to decompose a rational function into a sum of simpler fractions is that it makes it simpler to perform linear operations on it. Therefore the problem of computing derivatives, antiderivatives, integrals, power series expansions, Fourier series, residues, and linear functional transformations of rational functions can be reduced, via partial fraction decomposition, to making the computation on each single element used in the decomposition. See e.g. partial fractions in integration for an account of the use of the partial fractions in finding antiderivatives. Just which polynomials are irreducible depends on which field of scalars one adopts. Thus if one allows only real numbers, then irreducible polynomials are of degree either 1 or 2. If complex numbers are allowed, only 1st-degree polynomials can be irreducible. If one allows only rational numbers, or a finite field, then some higher-degree polynomials are irreducible.

Read more about Partial Fraction:  Basic Principles, Application To Symbolic Integration, Procedure, Over The Reals, The Role of The Taylor Polynomial, Fractions of Integers

Famous quotes containing the words partial and/or fraction:

    The one-eyed man will be King in the country of the blind only if he arrives there in full possession of his partial faculties—that is, providing he is perfectly aware of the precise nature of sight and does not confuse it with second sight ... nor with madness.
    Angela Carter (1940–1992)

    The mother as a social servant instead of a home servant will not lack in true mother duty.... From her work, loved and honored though it is, she will return to her home life, the child life, with an eager, ceaseless pleasure, cleansed of all the fret and fraction and weariness that so mar it now.
    Charlotte Perkins Gilman (1860–1935)