An ordered field is a field F together with a positive cone P.
The preorderings on F are precisely the intersections of families of positive cones on F. The positive cones are the maximal preorderings.
Read more about Ordered Field: Properties of Ordered Fields, Examples of Ordered Fields, Which Fields Can Be Ordered?, Topology Induced By The Order, Harrison Topology
Famous quotes containing the words ordered and/or field:
“The peace conference must not adjourn without the establishment of some ordered system of international government, backed by power enough to give authority to its decrees. ... Unless a league something like this results at our peace conference, we shall merely drop back into armed hostility and international anarchy. The war will have been fought in vain ...”
—Virginia Crocheron Gildersleeve (18771965)
“Yet, hermit and stoic as he was, he was really fond of sympathy, and threw himself heartily and childlike into the company of young people whom he loved, and whom he delighted to entertain, as he only could, with the varied and endless anecdotes of his experiences by field and river: and he was always ready to lead a huckleberry-party or a search for chestnuts and grapes.”
—Ralph Waldo Emerson (18031882)