Ordered Field - Harrison Topology

The Harrison topology is a topology on the set of orderings XF of a formally real field F. Each order can be regarded as a multiplicative group homomorphism from F* onto ±1. Giving ±1 the discrete topology and ±1F the product topology induces the subspace topology on XF. The product is a Boolean space (compact, Hausdorff and totally disconnected), and XF is a closed subset, hence again Boolean.

Read more about this topic:  Ordered Field

Famous quotes containing the word harrison:

    The treatment of the incident of the assault upon the sailors of the Baltimore is so conciliatory and friendly that I am of the opinion that there is a good prospect that the differences growing out of that serious affair can now be adjusted upon terms satisfactory to this Government by the usual methods and without special powers from Congress.
    —Benjamin Harrison (1833–1901)