Ordered Field - Properties of Ordered Fields

Properties of Ordered Fields

  • If x < y and y < z, then x < z. (transitivity)
  • If x < y and z > 0, then xz < yz.
  • If x < y and x,y > 0, then 1/y < 1/x

For every a, b, c, d in F:

  • Either −a ≤ 0 ≤ a or a ≤ 0 ≤ −a.
  • We are allowed to "add inequalities": If ab and cd, then a + cb + d
  • We are allowed to "multiply inequalities with positive elements": If ab and 0 ≤ c, then acbc.
  • 1 is positive. (Proof: either 1 is positive or −1 is positive. If −1 is positive, then (−1)(−1) = 1 is positive, which is a contradiction)
  • An ordered field has characteristic 0. (Since 1 > 0, then 1 + 1 > 0, and 1 + 1 + 1 > 0, etc. If the field had characteristic p > 0, then −1 would be the sum of p − 1 ones, but −1 is not positive). In particular, finite fields cannot be ordered.
  • Squares are non-negative. 0 ≤ a² for all a in F. (Follows by a similar argument to 1 > 0)

Every subfield of an ordered field is also an ordered field (inheriting the induced ordering). The smallest subfield is isomorphic to the rationals (as for any other field of characteristic 0), and the order on this rational subfield is the same as the order of the rationals themselves. If every element of an ordered field lies between two elements of its rational subfield, then the field is said to be Archimedean. Otherwise, such field is a non-Archimedean ordered field and contains infinitesimals. For example, the real numbers form an Archimedean field, but every hyperreal field is non-Archimedean.

An ordered field K is the real number field if it satisfies the axiom of Archimedes and every Cauchy sequence of K converges within K.

Read more about this topic:  Ordered Field

Famous quotes containing the words properties of, properties, ordered and/or fields:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    The peace conference must not adjourn without the establishment of some ordered system of international government, backed by power enough to give authority to its decrees. ... Unless a league something like this results at our peace conference, we shall merely drop back into armed hostility and international anarchy. The war will have been fought in vain ...
    Virginia Crocheron Gildersleeve (1877–1965)

    For my part, I would rather look toward Rutland than Jerusalem. Rutland,—modern town,—land of ruts,—trivial and worn,—not too sacred,—with no holy sepulchre, but profane green fields and dusty roads, and opportunity to live as holy a life as you can, where the sacredness, if there is any, is all in yourself and not in the place.
    Henry David Thoreau (1817–1862)