**Properties of Ordered Fields**

- If
*x*<*y*and*y*<*z*, then*x*<*z*. (transitivity) - If
*x*<*y*and*z*> 0, then*xz*<*yz*. - If
*x*<*y*and*x*,*y*> 0, then 1/*y*< 1/*x*

For every *a*, *b*, *c*, *d* in *F*:

- Either −
*a*≤ 0 ≤*a*or*a*≤ 0 ≤ −*a*. - We are allowed to "add inequalities": If
*a*≤*b*and*c*≤*d*, then*a*+*c*≤*b*+*d* - We are allowed to "multiply inequalities with positive elements": If
*a*≤*b*and 0 ≤*c*, then*ac*≤*bc*.

- 1 is positive. (Proof: either 1 is positive or −1 is positive. If −1 is positive, then (−1)(−1) = 1 is positive, which is a contradiction)
- An ordered field has characteristic 0. (Since 1 > 0, then 1 + 1 > 0, and 1 + 1 + 1 > 0, etc. If the field had characteristic
*p*> 0, then −1 would be the sum of*p*− 1 ones, but −1 is not positive). In particular, finite fields cannot be ordered. - Squares are non-negative. 0 ≤
*a*² for all*a*in*F*. (Follows by a similar argument to 1 > 0)

Every subfield of an ordered field is also an ordered field (inheriting the induced ordering). The smallest subfield is isomorphic to the rationals (as for any other field of characteristic 0), and the order on this rational subfield is the same as the order of the rationals themselves. If every element of an ordered field lies between two elements of its rational subfield, then the field is said to be *Archimedean*. Otherwise, such field is a non-Archimedean ordered field and contains infinitesimals. For example, the real numbers form an Archimedean field, but every hyperreal field is non-Archimedean.

An ordered field K is the real number field if it satisfies the axiom of Archimedes and every Cauchy sequence of K converges within K.

Read more about this topic: Ordered Field

### Famous quotes containing the words properties of, properties, ordered and/or fields:

“A drop of water has the *properties of* the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”

—Ralph Waldo Emerson (1803–1882)

“A drop of water has the *properties* of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”

—Ralph Waldo Emerson (1803–1882)

“Your mind was wrought in cosmic solitude,

Through which careered an undulous pageantry

Of fiends and suns, darkness and boiling sea,

All held in *ordered* sway by beauty’s mood.”

—Allen Tate (1899–1979)

“I respect not his labors, his farm where everything has its price, who would carry the landscape, who would carry his God, to market, if he could get anything for him; who goes to market for his god as it is; on whose farm nothing grows free, whose *fields* bear no crops, whose meadows no flowers, whose trees no fruit, but dollars; who loves not the beauty of his fruits, whose fruits are not ripe for him till they are turned to dollars. Give me the poverty that enjoys true wealth.”

—Henry David Thoreau (1817–1862)