Order Type of Well-orderings
Every well-ordered set is order-equivalent to exactly one ordinal number. The ordinal numbers are taken to be the canonical representatives of their classes, and so the order type of a well-ordered set is usually identified with the corresponding ordinal. For example, the order type of the natural numbers is ω.
The order type of a well-ordered set V is sometimes expressed as ord(V).
For example, consider the set of even ordinals less than ω·2+7, which is:
- V = {0, 2, 4, 6, ...; ω, ω+2, ω+4, ...; ω·2, ω·2+2, ω·2+4, ω·2+6}.
Its order type is:
- ord(V) = ω·2+4 = {0, 1, 2, 3, ...; ω, ω+1, ω+2, ...; ω·2, ω·2+1, ω·2+2, ω·2+3}.
Because there are 2 separate lists of counting and 4 in sequence at the end.
Read more about this topic: Order Type
Famous quotes containing the words order and/or type:
“There is no explanation for evil. It must be looked upon as a necessary part of the order of the universe. To ignore it is childish, to bewail it senseless.”
—W. Somerset Maugham (18741965)
“We need a type of theatre which not only releases the feelings, insights and impulses possible within the particular historical field of human relations in which the action takes place, but employs and encourages those thoughts and feelings which help transform the field itself.”
—Bertolt Brecht (18981956)