Ordered Set

An ordered set - in order theory of mathematics - is an ambiguous term referring to a set that is either a partially ordered set or a totally ordered set. A set with a binary relation R on its elements that is reflexive (for all a in the set, aRa), antisymmetric (if aRb and bRa, then a = b) and transitive (if aRb and bRc, then aRc) is described as a partially ordered set or poset. If the binary relation is antisymmetric, transitive and also total (for all a and b in the set, aRb or bRa), then the set is a totally ordered set. If every non-empty subset has a least element, then the set is a well-ordered set.

In information theory, an ordered set is a non-data carrying set of bits as used in 8b/10b encoding.

Famous quotes containing the words ordered and/or set:

    Twenty-four-hour room service generally refers to the length of time that it takes for the club sandwich to arrive. This is indeed disheartening, particularly when you’ve ordered scrambled eggs.
    Fran Lebowitz (b. 1950)

    O these encounterers, so glib of tongue,
    That give a coasting welcome ere it comes,
    And wide unclasp the tables of their thoughts
    To every ticklish reader! Set them down
    For sluttish spoils of opportunity
    And daughters of the game.
    William Shakespeare (1564–1616)