Numerical Methods For Ordinary Differential Equations - The Problem

The Problem

We want to approximate the solution of the differential equation

where f is a function that maps [t0,∞) × Rd to Rd, and the initial condition y0Rd is a given vector.

The above formulation is called an initial value problem (IVP). The Picard–Lindelöf theorem states that there is a unique solution, if f is Lipschitz continuous. In contrast, boundary value problems (BVPs) specify (components of) the solution y at more than one point. Different methods need to be used to solve BVPs, for example the shooting method (and its variants) or global methods like finite differences, Galerkin methods, or collocation methods.

Note that we restrict ourselves to first-order differential equations (meaning that only the first derivative of y appears in the equation, and no higher derivatives). This, however, does not restrict the generality of the problem, since a higher-order equation can easily be converted to a system of first-order equations by introducing extra variables. For example, the second-order equation y'' = −y can be rewritten as two first-order equations: y' = z and z' = −y.

Read more about this topic:  Numerical Methods For Ordinary Differential Equations

Famous quotes containing the word problem:

    Hypocrisy is the essence of snobbery, but all snobbery is about the problem of belonging.
    Alexander Theroux (b. 1940)

    What had really caused the women’s movement was the additional years of human life. At the turn of the century women’s life expectancy was forty-six; now it was nearly eighty. Our groping sense that we couldn’t live all those years in terms of motherhood alone was “the problem that had no name.” Realizing that it was not some freakish personal fault but our common problem as women had enabled us to take the first steps to change our lives.
    Betty Friedan (20th century)