Euler Method

In mathematics and computational science, the Euler method is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. The Euler method is named after Leonhard Euler, who treated it in his book Institutionum calculi integralis (published 1768–70).

The Euler method is a first-order method, which means that the local error (error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size. It also suffers from stability problems. For these reasons, the Euler method is not often used in practice. It serves as the basis to construct more complicated methods.

Read more about Euler Method:  Informal Geometrical Description, Formulation of The Method, Example, Derivation, Local Truncation Error, Global Truncation Error, Numerical Stability, Rounding Errors, Modifications and Extensions

Famous quotes containing the word method:

    Relying on any one disciplinary approach—time-out, negotiation, tough love, the star system—puts the parenting team at risk. Why? Because children adapt to any method very quickly; today’s effective technique becomes tomorrow’s worn dance.
    Ron Taffel (20th century)